Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-11616-z

Links

Tools

Export citation

Search in Google Scholar

Thermodynamics of nanodisc formation mediated by styrene/maleic acid (2:1) copolymer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractStyrene/maleic acid copolymers (SMA) have recently attracted great interest for in vitro studies of membrane proteins, as they self-insert into and fragment biological membranes to form polymer-bounded nanodiscs that provide a native-like lipid-bilayer environment. SMA copolymers are available in different styrene/maleic acid ratios and chain lengths and, thus, possess different charge densities, hydrophobicities, and solubilisation properties. Here, we studied the equilibrium solubilisation properties of the most commonly used copolymer, SMA(2:1), by monitoring the formation of nanodiscs from phospholipid vesicles using 31P nuclear magnetic resonance spectroscopy, dynamic light scattering, and differential scanning calorimetry. Comparison of SMA(2:1) phase diagrams with those of SMA(3:1) and diisobutylene/maleic acid (DIBMA) revealed that, on a mass concentration scale, SMA(2:1) is the most efficient membrane solubiliser, despite its relatively mild effects on the thermotropic phase behaviour of solubilised lipids. In contrast with previous kinetic studies, our equilibrium experiments demonstrate that the solubilisation of phospholipid bilayers by SMA(2:1) is most efficient at moderately alkaline pH values. This pH dependence was also observed for the solubilisation of native Escherichia coli membranes, for which SMA(2:1) again turned out to be the most powerful solubiliser in terms of the total amounts of membrane proteins extracted.