Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 27(115), p. 7141-7146, 2018

DOI: 10.1073/pnas.1806668115

Links

Tools

Export citation

Search in Google Scholar

Structural and functional insights into the unique CBS–CP12 fusion protein family in cyanobacteria

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Carbon fixation is arguably one of the most important metabolic processes on Earth. Stand-alone CP12 proteins are major players in the regulation of this pathway in all oxygenic photosynthetic organisms, yet their intrinsic disorder has so far hampered the capturing of a principal part of their structure. Here we provide structural insights into CP12 by investigating an uncharacterized CP12 fusion protein, CBS–CP12, which is widespread among cyanobacteria, and reveal a unique hexameric structure. Our data further extend the existing knowledge of the regulation of photosynthesis and carbon fixation by the CP12 protein family, suggesting a more versatile role of this protein family in global redox regulation, predominantly in bloom-forming cyanobacteria that pose major threats in lakes and reservoirs.