Published in

American Meteorological Society, Journal of the Atmospheric Sciences, 9(75), p. 3115-3137, 2018

DOI: 10.1175/jas-d-17-0302.1

Links

Tools

Export citation

Search in Google Scholar

Explicit Prediction of Hail in a Long-Lasting Multicellular Convective System in Eastern China Using Multimoment Microphysics Schemes

Journal article published in 2018 by Liping Luo ORCID, Ming Xue, Kefeng Zhu, Bowen Zhou
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract During the afternoon of 28 April 2015, a multicellular convective system swept southward through much of Jiangsu Province, China, over about 7 h, producing egg-sized hailstones on the ground. The hailstorm event is simulated using the Advanced Regional Prediction System (ARPS) at 1-km grid spacing. Different configurations of the Milbrandt–Yau microphysics scheme are used, predicting one, two, and three moments of the hydrometeor particle size distributions (PSDs). Simulated reflectivity and maximum estimated size of hail (MESH) derived from the simulations are verified against reflectivity observed by operational S-band Doppler radars and radar-derived MESH, respectively. Comparisons suggest that the general evolution of the hailstorm is better predicted by the three-moment scheme, and neighborhood-based MESH evaluation further confirms the advantage of the three-moment scheme in hail size prediction. Surface accumulated hail mass, number, and hail distribution characteristics within simulated storms are examined across sensitivity experiments. Results suggest that multimoment schemes produce more realistic hail distribution characteristics, with the three-moment scheme performing the best. Size sorting is found to play a significant role in determining hail distribution within the storms. Detailed microphysical budget analyses are conducted for each experiment, and results indicate that the differences in hail growth processes among the experiments can be mainly ascribed to the different treatments of the shape parameter within different microphysics schemes. Both the differences in size sorting and hail growth processes contribute to the simulated hail distribution differences within storms and at the surface.