Published in

Japanese Society for Intravascular Neosurgery, Interventional Neuroradiology, 2(24), p. 214-219, 2018

DOI: 10.1177/1591019917749825

Links

Tools

Export citation

Search in Google Scholar

Estimation of intra-arterial chemotherapy distribution to the retina in pediatric retinoblastoma patients using quantitative digital subtraction angiography

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Background and purpose The purpose of this article is to estimate the distribution of superselective intra-arterial chemotherapy (IAC) delivery to ocular target tissue using quantitative digital subtraction angiography (qDSA). Materials and methods From March 2010 to January 2016, 50 ophthalmic artery contrast DSAs obtained immediately prior to IAC infusions in 22 patients were analyzed. This study was conducted under a retrospective review IRB (no. 10-01862). Parametric color-coded DSAs (iFlow, Siemens Medical) were post-processed (MATLAB, The Mathworks Inc.) using two methods: two box regions of interest (pre-retina and globe) and four custom regions of interest (ROIs—ophthalmic artery, choroid, supraclinoid internal carotid artery (ICA), cavernous ICA). Mean interobserver reliability of custom ROI selection is presented as a 95% confidence interval of interclass correlation, and fractional chemotherapy delivery to selected ROIs as means ± standard deviation in this study. Results The estimated fraction of chemotherapy delivered to the globe with the first method was 79.5%. Percentage regional delivery using the second method was as follows: ophthalmic artery, 85.8%; choroid, 60.5%; supraclinoid ICA, 14.2%. The cavernous ICA ROI (encompassing distal catheter and potential reflux) gave a signal equivalent to 9.3% of total delivery. Conclusion Parametric color-coded qDSA can estimate the fraction of IAC delivered to the retina and other orbital structures in ocular retinoblastoma patients. This information can inform delivery location and dosing strategies on a patient-specific basis.