National Academy of Sciences, Proceedings of the National Academy of Sciences, 21(114), p. 5449-5454, 2017
Full text: Download
Significance The GTPase dynamin catalyzes membrane fission and is essential in endocytosis and other events such as organelle division. Dynamin is a unique molecular motor with torsional and contractile abilities. Because these abilities involve a conformational change at the whole-polymer level, standard structural biology tools have not been able to fully unravel the mechanism by which it constricts and twists. Here we used high-speed atomic force microscopy to image the constriction and fission of dynamin-coated tubules with subnanometer and subsecond resolution. Our results provide important findings to establish the contribution of the various constriction mechanisms.