Published in

Nature Research, Nature Communications, 1(9), 2018

DOI: 10.1038/s41467-018-05672-w

Links

Tools

Export citation

Search in Google Scholar

Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTransition metal dichalcogenide materials are unique in the wide variety of structural and electronic phases they exhibit in the two-dimensional limit. Here we show how such polymorphic flexibility can be used to achieve topological states at highly ordered phase boundaries in a new quantum spin Hall insulator (QSHI), 1T′-WSe2. We observe edge states at the crystallographically aligned interface between a quantum spin Hall insulating domain of 1T′-WSe2 and a semiconducting domain of 1H-WSe2 in contiguous single layers. The QSHI nature of single-layer 1T′-WSe2 is verified using angle-resolved photoemission spectroscopy to determine band inversion around a 120 meV energy gap, as well as scanning tunneling spectroscopy to directly image edge-state formation. Using this edge-state geometry we confirm the predicted penetration depth of one-dimensional interface states into the two-dimensional bulk of a QSHI for a well-specified crystallographic direction. These interfaces create opportunities for testing predictions of the microscopic behavior of topologically protected boundary states.