Published in

American Society of Mechanical Engineers, Journal of Electrochemical Energy Conversion and Storage, 1(15), 2017

DOI: 10.1115/1.4038518

Links

Tools

Export citation

Search in Google Scholar

Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed in Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.