Published in

European Geosciences Union, Ocean Science and Discussions, 5(14), p. 1329-1347, 2018

DOI: 10.5194/os-14-1329-2018

European Geosciences Union, Ocean Science Discussions, p. 1-37

DOI: 10.5194/os-2018-22

Links

Tools

Export citation

Search in Google Scholar

Structure and dynamics of mesoscale eddies over the Laptev Sea continental slope in the Arctic Ocean

Journal article published in 2018 by Andrey Pnyushkov ORCID, Igor V. Polyakov, Laurie Padman ORCID, An T. Nguyen
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Heat fluxes steered by mesoscale eddies may be a significant, but still not quantified, source of heat to the surface mixed layer and sea ice cover in the Arctic Ocean, as well as a source of nutrients for enhancing seasonal productivity in the near-surface layers. Here we use 4 years (2007–2011) of velocity and hydrography records from a moored profiler over the Laptev Sea slope and 15 months (2008–2009) of acoustic Doppler current profiler data from a nearby mooring to investigate the structure and dynamics of eddies at the continental margin of the eastern Eurasian Basin. Typical eddy scales are radii of the order of 10 km, heights of 600 m, and maximum velocities of ∼0.1 m s−1. Eddies are approximately equally divided between cyclonic and anticyclonic polarizations, contrary to prior observations from the deep basins and along the Lomonosov Ridge. Eddies are present in the mooring records about 20 %–25 % of the time, taking about 1 week to pass through the mooring at an average frequency of about one eddy per month. We found that the eddies observed are formed in two distinct regions – near Fram Strait, where the western branch of Atlantic Water (AW) enters the Arctic Ocean, and near Severnaya Zemlya, where the Fram Strait and Barents Sea branches of the AW inflow merge. These eddies, embedded in the Arctic Circumpolar Boundary Current, carry anomalous water properties along the eastern Arctic continental slope. The enhanced diapycnal mixing that we found within EB eddies suggests a potentially important role for eddies in the vertical redistribution of heat in the Arctic Ocean interior.