Published in

SAGE Publications, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2(233), p. 443-453, 2018

DOI: 10.1177/1475090217751992

Links

Tools

Export citation

Search in Google Scholar

Numerical investigation of vortex-induced vibration of an elastically mounted circular cylinder with One-degree of freedom at high Reynolds number using different turbulent models

Journal article published in 2018 by Niaz Bahadur Khan, Zainah Ibrahim ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study presents numerical investigation for flow around cylinder at Reynolds number = 104 using different turbulent models. Numerical simulations have been conducted for fixed cylinder case at Reynolds number = 104 and for cylinder free to oscillate in cross-flow direction, at Reynolds number O (104), mass–damping ratio = 0.011 and range of frequency ratio wt = 0.4–1.4 using two-dimensional Reynolds-averaged Navier–Stokes equations. In the literature, the study has been conducted using detached eddy simulation, large eddy simulation and direct numerical simulation which are comparatively expensive in terms of computational cost. This study utilizes the Reynolds-averaged Navier–Stokes shear stress transport k-ω and realizable k-ε models to investigate the flow around fixed cylinder and flow around cylinder constrained to oscillate in cross-flow direction only. Hydrodynamic coefficients, vortex mode shape and maximum amplitude ( Ay/ D) extracted from this study are compared with detached eddy simulation, large eddy simulation and direct numerical simulation results. Results obtained using two-dimensional Reynolds-averaged Navier–Stokes shear stress transport k-ω model are encouraging, while realizable k-ε model is unable to capture the entire response branches. In addition, broad range of “lock-in” region is observed due to delay in capturing the transition from upper to lower branch during two-dimensional realizable k-ε analyses.