Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Small, 19(14), p. 1800032

DOI: 10.1002/smll.201800032

Links

Tools

Export citation

Search in Google Scholar

Phase-Engineered PtSe2 -Layered Films by a Plasma-Assisted Selenization Process toward All PtSe2 -Based Field Effect Transistor to Highly Sensitive, Flexible, and Wide-Spectrum Photoresponse Photodetectors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe formation of PtSe2‐layered films is reported in a large area by the direct plasma‐assisted selenization of Pt films at a low temperature, where temperatures, as low as 100 °C at the applied plasma power of 400 W can be achieved. As the thickness of the Pt film exceeds 5 nm, the PtSe2‐layered film (five monolayers) exhibits a metallic behavior. A clear p‐type semiconducting behavior of the PtSe2‐layered film (≈trilayers) is observed with the average field effective mobility of 0.7 cm2 V−1 s−1 from back‐gated transistor measurements as the thickness of the Pt film reaches below 2.5 nm. A full PtSe2 field effect transistor is demonstrated where the thinner PtSe2, exhibiting a semiconducting behavior, is used as the channel material, and the thicker PtSe2, exhibiting a metallic behavior, is used as an electrode, yielding an ohmic contact. Furthermore, photodetectors using a few PtSe2‐layered films as an adsorption layer synthesized at the low temperature on a flexible substrate exhibit a wide range of absorption and photoresponse with the highest photocurrent of 9 µA under the laser wavelength of 408 nm. In addition, the device can maintain a high photoresponse under a large bending stress and 1000 bending cycles.