Published in

Wiley, Small, 23(12), p. 3164-3171

DOI: 10.1002/smll.201503883

Links

Tools

Export citation

Search in Google Scholar

Chirality-Selective Photoluminescence Enhancement of ssDNA-Wrapped Single-Walled Carbon Nanotubes Modified with Gold Nanoparticles

Journal article published in 2016 by Juan Yang, Qinghua Zhao, Min Lyu, Zhenyu Zhang, Xiao Wang ORCID, Meng Wang, Zhou Gao, Yan Li
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, a convenient method to enhance the photoluminescence (PL) of single‐walled carbon nanotubes (SWNTs) in aqueous solutions is provided. Dispersing by single‐stranded DNA (ssDNA) and modifying with gold nanoparticles (AuNPs), about tenfold PL enhancement of the SWNTs is observed. More importantly, the selective PL enhancement is achieved for some particular chiralities of interest over all other chiralities, by using certain specific ssDNA sequences that are reported to recognize these particular chiralities. By forming AuNP–DNA–SWNT nanohybrids, ssDNA serves as superior molecular spacers that on one hand protect SWNT from direct contacting with AuNP and causing PL quench, and on the other hand attract the AuNP in close proximity to the SWNT to enhance its PL. This PL enhancement method can be utilized for the PL analysis of SWNTs in aqueous solutions, for biomedical imaging, and may serve as a prescreening method for the recognition and separation of single chirality SWNTs by ssDNA.