Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 18(109), p. 183901

DOI: 10.1063/1.4966893

Links

Tools

Export citation

Search in Google Scholar

Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Plasmonic nanostructures have been widely applied in various types of solar cells for improving light absorption and therefore energy conversion efficiency. In this work, we demonstrate that Au@SiO2 core-shell nanorods with finely tuned aspect ratios are highly beneficial for the CH3NH3PbI3 perovskite solar cell, with the simultaneous enhancement of solar absorption and external quantum efficiency across a broad range of wavelength, which can contribute to the increased cross-sectional scattering and spectrally absorbing energy density. Therefore, a 16.1% improvement (from 12.4% to 14.4%) of the maximal external quantum efficiency can be achieved by such structures, accompanied with a 13.5% improvement (from 20.0 to 22.7 mA/cm2) of the maximal short-circuit current density and little improvement of the open-circuit voltage and fill factor. Our findings also provide a general guideline to design solar cell structures with thinner absorber layers and improve the absorption in other poorly light-absorbing devices like lead free perovskite solar cells as well.