Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Journal of Applied Physics, 6(124), p. 065901

DOI: 10.1063/1.5042457

Links

Tools

Export citation

Search in Google Scholar

Local structural changes during the disordered substitutional alloy transition in Bi2Te3 by high-pressure XAFS

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A2B3-type 3D topological insulators, Bi2Te3 and Sb2Te3, have been reported to transform into disordered substitutional alloys under high pressure. However, γ → δ phase transition and the local structure changes around Bi during the formation of the disordered Bi-Te binary alloy in Bi2Te3 still remain unclear. Here, high-pressure X-ray absorption fine structure (XAFS) combined with high-pressure X-ray diffraction has been used to explore the local structural transformations in the three structural phase transitions of Bi2Te3. The Bi L3-X-ray absorbing near edge structure (XANES) spectra of δ-Bi2Te3 clearly showed that a new absorption feature at energy of about 13 465 eV would emerge during the γ → δ phase transition. Through simulation of the XANES spectra by varying the cluster size, we confirmed that the new absorption peak arises from the medium-range order in bcc structure. The Bi L3-EXAFS results in δ phase reveal that the Bi atoms in the third shell exhibit abnormal elongations with pressure until merging with the shrinking Te shell. Our findings indicate a two-step structural transition of the disordered substitutional alloys via an ordered bcc intermediate phase.