Published in

American Association of Immunologists, The Journal of Immunology, 7(201), p. 2094-2106, 2018

DOI: 10.4049/jimmunol.1800578

Links

Tools

Export citation

Search in Google Scholar

Engineering a Single-Agent Cytokine/Antibody Fusion That Selectively Expands Regulatory T Cells for Autoimmune Disease Therapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract IL-2 has been used to treat diseases ranging from cancer to autoimmune disorders, but its concurrent immunostimulatory and immunosuppressive effects hinder efficacy. IL-2 orchestrates immune cell function through activation of a high-affinity heterotrimeric receptor (composed of IL-2Rα, IL-2Rβ, and common γ [γc]). IL-2Rα, which is highly expressed on regulatory T (TReg) cells, regulates IL-2 sensitivity. Previous studies have shown that complexation of IL-2 with the JES6-1 Ab preferentially biases cytokine activity toward TReg cells through a unique mechanism whereby IL-2 is exchanged from the Ab to IL-2Rα. However, clinical adoption of a mixed Ab/cytokine complex regimen is limited by stoichiometry and stability concerns. In this study, through structure-guided design, we engineered a single agent fusion of the IL-2 cytokine and JES6-1 Ab that, despite being covalently linked, preserves IL-2 exchange, selectively stimulating TReg expansion and exhibiting superior disease control to the mixed IL-2/JES6-1 complex in a mouse colitis model. These studies provide an engineering blueprint for resolving a major barrier to the implementation of functionally similar IL-2/Ab complexes for treatment of human disease.