Published in

CSIRO Publishing, Reproduction, Fertility and Development, 9(29), p. 1787

DOI: 10.1071/rd16154

Links

Tools

Export citation

Search in Google Scholar

Gene expression profile in heat-shocked Holstein and Nelore oocytes and cumulus cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The present study determined the transcriptome profile in Nelore and Holstein oocytes subjected to heat shock during IVM and the mRNA abundance of selected candidate genes in Nelore and Holstein heat-shocked oocytes and cumulus cells (CC). Holstein and Nelore cows were subjected to in vivo follicle aspiration. Cumulus–oocyte complexes were assigned to control (38.5°C, 22 h) or heat shock (41°C for 12 h, followed by 38.5°C for 10 h) treatment during IVM. Denuded oocytes were subjected to bovine microarray analysis. Transcriptome analysis demonstrated 127, nine and six genes were differentially expressed between breed, temperature and the breed × temperature interaction respectively. Selected differentially expressed genes were evaluated by real-time polymerase chain reaction in oocytes and respective CC. The molecular motor kinesin family member 3A (KIF3A) was upregulated in Holstein oocytes, whereas the pro-apoptotic gene death-associated protein (DAP) and the membrane trafficking gene DENN/MADD domain containing 3 (DENND3) were downregulated in Holstein oocytes. Nelore CC showed increased transcript abundance for tight junction claudin 11 (CLDN11), whereas Holstein CC showed increased transcript abundance for antioxidant metallothionein 1E (MT1E) . Moreover, heat shock downregulated antioxidant MT1E mRNA expression in CC. In conclusion, oocyte transcriptome analysis indicated a strong difference between breeds involving organisation and cell death. In CC, both breed and temperature affected mRNA abundance, involving cellular organisation and oxidative stress.