Published in

American Heart Association, Arteriosclerosis, Thrombosis, and Vascular Biology, 5(37), p. 812-822, 2017

DOI: 10.1161/atvbaha.117.309207

Links

Tools

Export citation

Search in Google Scholar

RXR Ligands Negatively Regulate Thrombosis and Hemostasis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objective— Platelets have been found to express intracellular nuclear receptors including the retinoid X receptors (RXRα and RXRβ). Treatment of platelets with ligands of RXR has been shown to inhibit platelet responses to ADP and thromboxane A2; however, the effects on responses to other platelet agonists and the underlying mechanism have not been fully characterized. Approach and Results— The effect of 9- cis -retinoic acid, docosahexaenoic acid and methoprene acid on collagen receptor (glycoprotein VI [GPVI]) agonists and thrombin-stimulated platelet function; including aggregation, granule secretion, integrin activation, calcium mobilization, integrin αIIbβ3 outside-in signaling and thrombus formation in vitro and in vivo were determined. Treatment of platelets with RXR ligands resulted in attenuation of platelet functional responses after stimulation by GPVI agonists or thrombin and inhibition of integrin αIIbβ3 outside-in signaling. Treatment with 9- cis -retinoic acid caused inhibition of thrombus formation in vitro and an impairment of thrombosis and hemostasis in vivo. Both RXR ligands stimulated protein kinase A activation, measured by VASP S157 phosphorylation, that was found to be dependent on both cAMP and nuclear factor κ-light-chain-enhancer of activated B cell activity. Conclusions— This study identifies a widespread, negative regulatory role for RXR in the regulation of platelet functional responses and thrombus formation and describes novel events that lead to the upregulation of protein kinase A, a known negative regulator of many aspects of platelet function. This mechanism may offer a possible explanation for the cardioprotective effects described in vivo after treatment with RXR ligands.