Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-29787-8

Links

Tools

Export citation

Search in Google Scholar

Macroecological patterns of the phytoplankton production of polyunsaturated aldehydes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe polyunsaturated aldehydes (PUAs) are bioactive metabolites commonly released by phytoplankton species. Based primarily on laboratory experiments, PUAs have been implicated in deleterious effects on herbivores and competing phytoplankton species or in the regulation of the rates of bacterial organic matter remineralization; however, the role of the PUAs at an ecosystem level is still under discussion. Using data of PUA production in natural phytoplankton assemblages over a wide range of conditions, we analyzed macroecological patterns aiming for a comprehensive environmental contextualization that will further our understanding of the control and ecologic role played by these compounds. PUA composition changed from the predominance of decadienal in oligotrophy, octadienal in eutrophy, and heptadienal at intermediate conditions. The production of PUAs per unit biomass also showed a strong relationship with the trophic status, sharply increasing towards oligotrophic conditions and with small-sized cells reaching the highest production rates. High ratios of dissolved inorganic nitrogen to dissolved inorganic phosphorus also promoted PUA production, albeit to a considerably lesser extent. Although the allelopathic use of PUAs to outcompete other phytoplankton or reduce herbivory may be key in some environments and interactions, the macroecological patterns found here, showing higher production towards the poorest waters and among the small species typically populating these environments, support and link at the large scale the hypotheses of the nutrient-derived stress as driver for the production of PUAs together with the use of these compounds as boosters for the nutrient remineralization.