Published in

Cambridge University Press, Microscopy and Microanalysis, 5(22), p. 997-1006, 2016

DOI: 10.1017/s1431927616011612

Links

Tools

Export citation

Search in Google Scholar

Characterization of Amorphous Oxide Nano-Thick Layers on 316L Stainless Steel by Electron Channeling Contrast Imaging and Electron Backscatter Diffraction

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractCharacterization of the topmost surface of biomaterials is crucial to understanding their properties and interactions with the local environment. In this study, the oxide layer microstructure of plasma-modified 316L stainless steel (SS316L) samples was analyzed by a combination of electron backscatter diffraction and electron channeling contrast imaging using low-energy incident electrons. Both techniques allowed clear identification of a nano-thick amorphous oxide layer, on top of the polycrystalline substrate, for the plasma-modified samples. A methodology was developed using Monte Carlo simulations combined with the experimental results to estimate thickness of the amorphous layer for different surface conditions. X-ray photoelectron spectroscopy depth profiles were used to validate these estimations.