Published in

American Diabetes Association, Diabetes, 8(66), p. 2266-2277

DOI: 10.2337/db16-1405

Links

Tools

Export citation

Search in Google Scholar

Protective Effect of let-7 miRNA Family in Regulating Inflammation in Diabetes-Associated Atherosclerosis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The let-7 miRNA family plays a key role in modulating inflammatory responses. Vascular smooth muscle cell (SMC) proliferation and endothelial cell (EC) dysfunction are critical in the pathogenesis of atherosclerosis, including in the setting of diabetes. Here we report that let-7 levels are decreased in diabetic human carotid plaques and in a model of diabetes-associated atherosclerosis, the diabetic ApoE−/− mouse. In vitro platelet-derived growth factor (PDGF)– and tumor necrosis factor-α (TNF-α)–induced vascular SMC and EC activation was associated with reduced let-7 miRNA expression via Lin28b, a negative regulator of let-7 biogenesis. Ectopic overexpression of let-7 in SMCs inhibited inflammatory responses including proliferation, migration, monocyte adhesion, and nuclear factor-κB activation. The therapeutic potential of restoring let-7 levels using a let-7 mimic was tested: in vitro in SMCs using an endogenous anti-inflammatory lipid (lipoxin A4), ex vivo in murine aortas, and in vivo via tail vein injection in a 24-h murine model. Furthermore, we delivered let-7 mimic to human carotid plaque ex vivo and observed significant changes to the secretome in response to let-7 therapy. Restoration of let-7 expression could provide a new target for an anti-inflammatory approach in diabetic vascular disease.