Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-20384-3

Links

Tools

Export citation

Search in Google Scholar

Obtaining high-quality draft genomes from uncultured microbes by cleaning and co-assembly of single-cell amplified genomes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSingle-cell genomics is a straightforward approach to obtain genomes from uncultured microbes. However, sequence reads from a single-cell amplified genome (SAG) contain significant bias and chimeric sequences. Here, we describe Cleaning and Co-assembly of a Single-Cell Amplified Genome (ccSAG), a novel analytical workflow to obtain composite single-cell genomes with elimination of sequence errors. By the integration of ccSAG with a massively parallel single-cell genome amplification platform based on droplet microfluidics, we can generate multiple SAGs and effectively integrate them into the composite genomes quality equivalent to the data obtained from bulk DNA. We obtained two novel draft genomes from single gut microbial cells with high completeness (>96.6%) and extremely low contamination (<1.25%). Moreover, we revealed the presence of single nucleotide polymorphisms in the specific gene by sequence comparison at the single-cell level. Thus, the workflow yields near-complete genomes from uncultured microbes, and enables analyses of genetic heterogeneity within identical strains.