Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 2(10), p. e0117412, 2015

DOI: 10.1371/journal.pone.0117412

Links

Tools

Export citation

Search in Google Scholar

Neurodegeneration and Unfolded-Protein Response in Mice Expressing a Membrane-Tethered Flexible Tail of PrP

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The cellular prion protein (PrPC) consists of a flexible N-terminal tail (FT, aa 23–128) hinged to a membrane-anchored globular domain (GD, aa 129–231). Ligation of the GD with antibodies induces rapid neurodegeneration, which is prevented by deletion or functional inactivation of the FT. Therefore, the FT is an allosteric effector of neurotoxicity. To explore its mechanism of action, we generated transgenic mice expressing the FT fused to a GPI anchor, but lacking the GD (PrPΔ141–225, or “FTgpi”). Here we report that FTgpi mice develop a progressive, inexorably lethal neurodegeneration morphologically and biochemically similar to that triggered by anti-GD antibodies. FTgpi was mostly retained in the endoplasmic reticulum, where it triggered a conspicuous unfolded protein response specifically activating the PERK pathway leading to phosphorylation of eIF2α and upregulation of CHOP ultimately leading to neurodegeration similar to what was observed in prion infection.