Published in

Wiley, ChemBioChem, 18(19), p. 1934-1938

DOI: 10.1002/cbic.201800346

Links

Tools

Export citation

Search in Google Scholar

A One-Pot “Triple-C” Multicyclization Methodology for the Synthesis of Highly Constrained Isomerically Pure Tetracyclic Peptides

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractA broadly applicable one‐pot methodology for the facile transformation of linear peptides into tetracyclic peptides through a chemoenzymatic peptide synthesis/chemical ligation of peptides onto scaffolds/copper(I)‐catalyzed reaction (CEPS/CLIPS/CuAAC; “triple‐C”) locking methodology is reported. Linear peptides with varying lengths (≥14 amino acids), comprising two cysteines and two azidohomoalanines (Aha), were efficiently cyclized head‐to‐tail by using the peptiligase variant omniligase‐1 (CEPS). Subsequent ligation–cyclization with tetravalent (T41/2) scaffolds containing two bromomethyl groups (CLIPS) and two alkyne functionalities (CuAAC) yielded isomerically pure tetracyclic peptides. Sixteen different functional tetracycles, derived from bicyclic inhibitors against urokinase plasminogen activator (uPA) and coagulation factor XIIa (FXIIa), were successfully synthesized and their bioactivities evaluated. Two of these (FF‐T41/2) exhibited increased inhibitory activity against FXIIa, compared with a bicyclic control peptide. The corresponding hetero‐bifunctional variants (UF/FU‐T41/2), with a single copy of each inhibitory sequence, exhibited micromolar activities against both uPA and FXIIa; thus illustrating the potential of the “bifunctional tetracyclic peptide” inhibitor concept.