Dissemin is shutting down on January 1st, 2025

Published in

American Society of Hematology, Blood, 1(106), p. 150-157, 2005

DOI: 10.1182/blood-2005-01-0023

American Society of Hematology, Blood, 11(106), p. 3891-3891, 2005

DOI: 10.1182/blood.v106.11.3891.3891

Links

Tools

Export citation

Search in Google Scholar

The Role of Endothelial PI3Kγ Activity in Neutrophil Trafficking.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phosphoinositide 3-kinase gamma (PI3Kgamma) in neutrophils plays a critical role in the directed migration of these cells into inflamed tissues. In this study, we demonstrate the importance of the endothelial component of PI3Kgamma activity relative to its leukocyte counterpart in supporting neutrophil interactions with the inflamed vessel wall. Despite the reconstitution of class-Ib PI3K function in neutrophils of p110gamma-/- mice, we observed a 45% reduction in accumulation of these cells in an acute lung injury model. Mechanistically, this appears to result from a perturbation in selectin-mediated adhesion as manifested by a 70% reduction in wild-type (WT) neutrophil attachment to and 17-fold increase in rolling velocities on p110gamma-/- microvessels in vivo in response to tumor necrosis factor alpha (TNFalpha). This alteration in adhesion was further augmented by a deficiency in p110delta, suggesting that the activity of both catalytic subunits is required for efficient capture of neutrophils by cytokine-stimulated endothelium. Interestingly, E-selectin-mediated adhesion in p110gamma-/-) mice was impaired by more than 95%, but no defect in nuclear factor kappa B (NF-kappaB)-induced gene expression was observed. These findings suggest a previously unrecognized partnership between class-I PI3Ks expressed in leukocytes and endothelium, the combination of which is required for the efficient trafficking of immunocompetent cells to sites of inflammation.