Published in

American Society of Hematology, Blood, 1(106), p. 103-109, 2005

DOI: 10.1182/blood-2004-10-4041

Links

Tools

Export citation

Search in Google Scholar

p85α subunit of class IA PI-3 kinase is crucial for macrophage growth and migration

Journal article published in 2005 by Jovencio Borneo, Veerendra Munugalavadla, David A. Ingram, Reuben Kapur
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Macrophages play an essential role in defending against invading pathogens by migrating to the sites of infection, removing apoptotic cells, and secreting inflammatory cytokines. The molecular mechanisms whereby macrophages regulate these processes are poorly understood. Using bone marrow-derived macrophages (BMMs) deficient in the expression of p85alpha-subunit of class IA phosphatidylinositol 3 (PI-3) kinase, we demonstrate 50% reduction in proliferation in response to macrophage-colony-stimulating factor (M-CSF) as well as granulocyte macrophage-colony-stimulating factor (GM-CSF) compared with wild-type controls. Furthermore, p85alpha-/- BMMs demonstrate a significant reduction in migration in a wound-healing assay compared with wild-type controls. The reduction in migration due to p85alpha deficiency in BMMs is associated with reduced adhesion and directed migration on fibronectin and vascular cell adhesion molecule-1. In addition, deficiency of p85alpha in BMMs also results in defective phagocytosis of sheep red blood cells. Biochemically, loss of p85alpha in BMMs results in reduced activation of Akt and Rac, but not Erk (extracellular signal-related kinase) mitogen-activated protein (MAP) kinase. Taken together, our results provide genetic evidence for the importance of p85alpha in regulating both actin- and growth-based functions in macrophages, and provide a potential therapeutic target for the treatment of diseases involving macrophages, including inflammation.