Published in

Oxford University Press, Stem Cells Translational Medicine, 7(5), p. 860-869, 2016

DOI: 10.5966/sctm.2015-0303

Links

Tools

Export citation

Search in Google Scholar

Rho Kinase Inhibition Is Essential During In Vitro Neurogenesis and Promotes Phenotypic Rescue of Human Induced Pluripotent Stem Cell-Derived Neurons With Oligophrenin-1 Loss of Function

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Rho-GTPases have relevant functions in various aspects of neuronal development, such as differentiation, migration, and synaptogenesis. Loss of function of the oligophrenin-1 gene (OPHN1) causes X-linked intellectual disability with cerebellar hypoplasia and leads to hyperactivation of the rho kinase (ROCK) pathway. ROCK mainly acts through phosphorylation of the myosin phosphatase targeting subunit 1, triggering actin-myosin contractility. We show that during in vitro neurogenesis, ROCK activity decreases from day 10 until terminal differentiation, whereas in OPHN1-deficient human induced pluripotent stem cells (h-iPSCs), the levels of ROCK are elevated throughout differentiation. ROCK inhibition favors neuronal-like appearance of h-iPSCs, in parallel with transcriptional upregulation of nuclear receptor NR4A1, which is known to induce neurite outgrowth. This study analyzed the morphological, biochemical, and functional features of OPHN1-deficient h-iPSCs and their rescue by treatment with the ROCK inhibitor fasudil, shedding light on the relevance of the ROCK pathway during neuronal differentiation and providing a neuronal model for human OPHN1 syndrome and its treatment. Significance The analysis of the levels of rho kinase (ROCK) activity at different stages of in vitro neurogenesis of human induced pluripotent stem cells reveals that ROCK activity decreases progressively in parallel with the appearance of neuronal-like morphology and upregulation of nuclear receptor NR4A1. These results shed light on the role of the ROCK pathway during early stages of human neurogenesis and provide a neuronal stem cell-based model for the treatment of OPHN1 syndrome and other neurological disorders due to ROCK dysfunction.