Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Photonics, 7(7), p. 545-549, 2013

DOI: 10.1038/nphoton.2013.112

Links

Tools

Export citation

Search in Google Scholar

Integrated multimode interferometers with arbitrary designs for photonic boson sampling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The evolution of bosons undergoing arbitrary linear unitary transformations quickly becomes hard to predict using classical computers as we increase the number of particles and modes. Photons propagating in a multiport interferometer naturally solve this so-called boson sampling problem(1), thereby motivating the development of technologies that enable precise control of multiphoton interference in large interferometers(2-4). Here, we use novel three-dimensional manufacturing techniques to achieve simultaneous control of all the parameters describing an arbitrary interferometer. We implement a small instance of the boson sampling problem by studying three-photon interference in a five-mode integrated interferometer, confirming the quantum-mechanical predictions. Scaled-up versions of this set-up are a promising way to demonstrate the computational advantage of quantum systems over classical computers. The possibility of implementing arbitrary linear-optical interferometers may also find applications in high-precision measurements and quantum communication(5).