Published in

Wiley, The Journal of Physiology, 2(512), p. 421-434, 1998

DOI: 10.1111/j.1469-7793.1998.421be.x

Links

Tools

Export citation

Search in Google Scholar

Anoxia differentially modulates multiple K+currents and depolarizes neonatal rat adrenal chromaffin cells

Journal article published in 1998 by Roger J. Thompson ORCID, Colin A. Nurse
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

1. Using perforated-patch, whole cell recording, we investigated the membrane mechanisms underlying O2 chemosensitivity in neonatal rat adrenomedullary chromaffin cells (AMC) bathed in extracellular solution containing tetrodotoxin (TTX; 0.5-1 microM), with or without blockers of calcium entry. 2. Under voltage clamp, low PO2 (0-15 mmHg) caused a graded and reversible suppression in macroscopic outward K+ current. The suppression during anoxia (PO2 = 0 mmHg) was approximately 35% (voltage step from -60 to +30 mV) and was due to a combination of several factors: (i) suppression of a cadmium-sensitive, Ca2+-dependent K+ current, IK(CaO2); (ii) suppression of a Ca2+-insensitive, delayed rectifier type K+ current, IK(VO2); (iii) activation of a glibenclamide- (and Ca2+)-sensitive current, IK(ATP). 3. During normoxia (PO2 = 150 mmHg), application of pinacidil (100 microM), an ATP-sensitive potassium channel (KATP) activator, increased outward current density by 45.0 +/- 7.0 pA pF-1 (step from -60 to + 30 mV), whereas the KATP blocker glibenclamide (50 microM) caused only a small suppression by 6.3 +/- 4.0 pA pF-1. In contrast, during anoxia the presence of glibenclamide resulted in a substantial reduction in outward current density by 24.9 +/- 7.9 pA pF-1, which far exceeded that seen in its absence. Thus, activation of IK(ATP) by anoxia appears to reduce the overall K+ current suppression attributable to the combined effects of IK(CaO2) and IK(VO2). 4. Pharmacological tests revealed that IK(CaO2) was carried predominantly by maxi-K+ or BK potassium channels, sensitive to 50-100 nM iberiotoxin; this current also accounted for the major portion (approximately 60%) of the anoxic suppression of outward current. Tetraethylammonium (TEA; 10-20 mM) blocked all of the anoxia-sensitive K+ currents recorded under voltage clamp, i.e. IK(CaO2), IK(VO2) and IK(ATP). 5. Under current clamp, anoxia depolarized neonatal AMC by 10-15 mV from a resting potential of approximately -55 mV. At least part of this depolarization persisted in the presence of either TEA, Cd2+, 4-aminopyridine or charybdotoxin, suggesting the presence of anoxia-sensitive mechanisms additionalto those revealed under voltage clamp. In Na+/Ca2+-free solutions, the membrane hyperpolarized, though at least a portion of the anoxia-induced depolarization persisted. 6. In the presence of glibenclamide, the anoxia-induced depolarization increased significantly to approximately 25 mV, suggesting that activation of KATP channels may function to attenuate the anoxia-induced depolarization or receptor potential.