Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Computers, 7(54), p. 837-851, 2005

DOI: 10.1109/tc.2005.115

Links

Tools

Export citation

Search in Google Scholar

Digit-recurrence dividers with reduced logical depth

Journal article published in 2005 by Elisardo Antelo, Tomás Lang, Paolo Montuschi ORCID, Alberto Nannarelli
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, we propose a class of division algorithms with the aim of reducing the delay of the selection of the quotient digit by introducing more concurrency and flexibility in its computation. From the proposed class of algorithms, we select one that moves part of the selection function out of the critical path, with a corresponding reduction in the critical path compared with existing alternatives: we present the algorithm and describe the architectures for radix 4 and for radix 16. For radix 16, we use the scheme of overlapping two radix-4 stages. In both cases, radix 4 and radix 16, we show that our algorithms allow the design of units with well-balanced critical paths with consequent decreases of the cycle times. Moreover, in the radix-16 case, we include some additional speculation techniques. To estimate the speedup, we used a rough timing model based on logical effort. For both radices, we estimate a speedup of about 25 percent with respect to previous implementations. In the radix-4 case, this is achieved by using roughly the same area, while, in the radix-16 case, the area is increased by about 30 percent. We verified our estimations by performing a synthesis of the radix-4 units.