Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Structural Health Monitoring, 1(17), p. 24-38, 2016

DOI: 10.1177/1475921716682688

Links

Tools

Export citation

Search in Google Scholar

Structural health monitoring using torsional guided wave electromagnetic acoustic transducers

Journal article published in 2016 by Balint Herdovics, Frederic Cegla ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Torsional guided wave inspection is widely used for pipeline inspection. Piezoelectric and magnetostrictive transducers are most commonly used to generate torsional guided waves. These types of transducers require bonding or mechanical contact to the pipe which can result in changes over time which are undesirable for structural health monitoring. This article presents a non-contact Lorentz force–based electromagnetic acoustic transducer for torsional guided wave monitoring of pipelines. First, the excitation mechanism of the transducer is simulated by analyzing the eddy current and the static magnetic field using the finite element method. An electromagnetic acoustic transducer transformer model is presented which describes the eddy current generation transfer function and the ultrasound excitation. Independently simulated eddy current and magnetic fields are used to calculate the Lorentz force that an electromagnetic acoustic transducer array induces on the surface of a 3-in schedule 40 pipe, and an explicit finite element solver is then used to simulate the elastic wave propagation in the pipe. Then, the reception mechanism and the expected received signal levels are discussed. The construction of an experimental transducer is described, and measurement results from the transducer setup are presented. The measured and modeled performance agree well. Finally, a monitoring example is presented where an artificial defect with 3% reflection coefficient is introduced and successfully detected with the designed sensor.