Published in

Wiley, Biopolymers, 2(109), p. e23087

DOI: 10.1002/bip.23087

Links

Tools

Export citation

Search in Google Scholar

Probing the activity of a recombinant Zn2+ -transporting P-type ATPase

Journal article published in 2017 by H. Ravishankar, A. Barth, M. Andersson ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractP‐type ATPase proteins maintain cellular homeostasis and uphold critical concentration gradients by ATP‐driven ion transport across biological membranes. Characterization of single‐cycle dynamics by time‐resolved X‐ray scattering techniques in solution could resolve structural intermediates not amendable to for example crystallization or cryo‐electron microscopy sample preparation. To pave way for such time‐resolved experiments, we used biochemical activity measurements, Attenuated Total Reflectance (ATR) and time‐dependent Fourier‐Transform Infra‐Red (FTIR) spectroscopy to identify optimal conditions for activating a Zn2+‐transporting Type‐I ATPase from Shigella sonnei (ssZntA) at high protein concentration using caged ATP. The highest total activity was observed at a protein concentration of 25 mg/mL, at 310 K, pH 7, and required the presence of 20% (v/v) glycerol as stabilizing agent. Neither the presence of caged ATP nor increasing lipid‐to‐protein ratio affected the hydrolysis activity significantly. This work also paves way for characterization of recombinant metal‐transporting (Type‐I) ATPase mutants with medical relevance.