Published in

Oxford University Press, The Plant Cell, 6(25), p. 2037-2055, 2013

DOI: 10.1105/tpc.112.108258

Links

Tools

Export citation

Search in Google Scholar

Early Disruption of Maternal-Zygotic Interaction and Activation of Defense-Like Responses in Arabidopsis Interspecific Crosses

Journal article published in 2013 by Diana Burkart-Waco, Kathie Ngo, Brian Dilkes, Caroline Josefsson, Luca Comai ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractSeed death resulting from hybridization between Arabidopsis thaliana and Arabidopsis arenosa has complex genetic determination and involves deregulation 5 to 8 d after pollination (DAP) of AGAMOUS-LIKE genes and retroelements. To identify causal mechanisms, we compared transcriptomes of compatible and incompatible hybrids and parents at 3 DAP. Hybrids misexpressed endosperm and seed coat regulators and hyperactivated genes encoding ribosomal, photosynthetic, stress-related, and immune response proteins. Regulatory disruption was more severe in Columbia-0 hybrids than in C24 hybrids, consistent with the degree of incompatibility. Maternal loss-of-function alleles for endosperm growth factor TRANSPARENT TESTA GLABRA2 and HAIKU1 and defense response regulators NON-EXPRESSOR OF PATHOGENESIS RELATED1 and SALICYLIC ACID INDUCTION-DEFICIENT2 increased hybrid seed survival. The activation of presumed POLYCOMB REPRESSIVE COMPLEX (PRC) targets, together with a 20-fold reduction in expression of FERTILIZATION INDEPENDENT SEED2, indicated a PRC role. Proximity to transposable elements affected natural variation for gene regulation, but transposon activation did not differ from controls. Collectively, this investigation provides candidates for multigenic orchestration of the incompatibility response through disruption of endosperm development, a novel role for communication between endosperm and maternal tissues and for pathways previously connected to immunity, but, surprisingly, does not identify a role for transposons.