Published in

Wiley, Chirality, 9(29), p. 476-485

DOI: 10.1002/chir.22711

Links

Tools

Export citation

Search in Google Scholar

Exciton coupling between enones: Quassinoids revisited

Journal article published in 2017 by Gennaro Pescitelli ORCID, Lorenzo Di Bari ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe electronic circular dichroism (ECD) spectra of two previously reported quassinoids containing a pair of enone chromophores are revisited to gain insight into the consistency and applicability of the exciton chirality method. Our study is based on time‐dependent Density Functional Theory calculations, transition and orbital analysis, and numerical exciton coupling calculations. In quassin (1) the enone/enone exciton coupling is quasi‐degenerate, yielding strong rotational strengths that account for the observed ECD spectrum in the enone π‐π* region. In perforalactone C (2) the nondegenerate coupling produces weak rotational strengths, and the ECD spectrum is dominated by other mechanisms of optical activity. We remark the necessity of a careful application of the nondegenerate exciton coupling method in similar cases.