Published in

American Association for the Advancement of Science, Science, 6408(361), p. 1234-1238, 2018

DOI: 10.1126/science.aau3369

Links

Tools

Export citation

Search in Google Scholar

Unlocking P(V): Reagents for chiral phosphorothioate synthesis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A swift citrusy path to chiral phosphorus The phosphates in the backbones of DNA and RNA are often drawn like crosses but are in fact tetrahedral. Sulfur is sometimes substituted for one of the phosphate oxygens during development of nucleotide-based drugs. Because of the geometry, this swap can lead to two different isomers. Knouse et al. report a pair of phosphorus reagents that conveniently produce either isomer selectively. This ability depended on the configuration of appended limonene substituents that are subsequently jettisoned. In addition to simplifying the route to sulfur-substituted oligonucleotides, these reagents will enable more precise studies of each isomer's distinct bioactivity. Science , this issue p. 1234