Published in

De Gruyter, Zeitschrift für Naturforschung B, 2(73), p. 115-123, 2018

DOI: 10.1515/znb-2017-0186

Links

Tools

Export citation

Search in Google Scholar

Cd(II) and Zn(II) thiocyanate coordination compounds with 3-ethylpyridine: synthesis, crystal structures and properties

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Reaction of Cd(NCS)2 and Zn(NCS)2 with 3-ethylpyridine leads to the formation of compounds of compositions M(NCS)2(3-ethylpyridine)4 (M=Cd, 1-Cd; Zn, 1-Zn) and M(NCS)2(3-ethylpyridine)2 (M=Cd, 2-Cd; Zn, 2-Zn). 1-Cd and 1-Zn are isotypic and form discrete complexes in which the metal cations are octahedrally coordinated by two trans-coordinating N-bonded thiocyanate anions and four 3-ethylpyridine co-ligands. In 2-Cd the cations are also octahedrally coordinated but linked into chains by pairs of μ-1,3-bridging anionic ligands. 2-Zn is built up of discrete complexes, in which the Zn cation is tetrahedrally coordinated by two N-bonded thiocyanate anions and two 3-ethylpyridine co-ligands. Compounds 1-Cd, 2-Cd and 2-Zn can be prepared in a pure state, whereas 1-Zn is unstable and transforms on storage into 2-Zn. If 1-Cd and 1-Zn are heated, a transformation into 2-Cd, respectively 2-Zn is observed. Luminescence measurements reveal that 1-Cd, 2-Cd and 2-Zn emit light in the blue spectral range with maxima at, respectively, 21724, 21654 and 22055 cm−1, assigned to ligand-based luminescence.