Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 31(115), 2018

DOI: 10.1073/pnas.1803662115

Links

Tools

Export citation

Search in Google Scholar

Delineating the role of cooperativity in the design of potent PROTACs for BTK

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Proteolysis targeting chimera (PROTAC)-based protein degradation is an emerging field that holds significant promise for targeting the “undruggable” proteome: the vast majority of the proteins that do not exhibit enzymatic activity and are thereby not amenable to classical inhibition. Despite significant progress, a thorough mechanistic characterization of biochemical determinants that underpin efficient PROTAC activity is lacking. Here we address one such question: Is positive cooperativity necessary for potent protein degradation? Through a collection of independent techniques, we show that within a Bruton’s tyrosine kinase/cereblon PROTAC system, potent knockdown correlates with alleviation of steric clashes in the absence of thermodynamic cooperativity. This result broadens the scope of PROTAC applications and affects fundamental design criteria across the field.