Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 29(115), 2018

DOI: 10.1073/pnas.1806123115

Links

Tools

Export citation

Search in Google Scholar

Molecular profiling of reticular gigantocellularis neurons indicates that eNOS modulates environmentally dependent levels of arousal

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Certain large neurons deep in the brainstem, in the nucleus gigantocellularis (NGC), are crucial for waking up the brain from deep sleep, anesthesia, or injury. NGC neurons, which project axons to central thalamus, should be especially important because central thalamic stimulation heightens CNS arousal in animals and in human patients. We have used the retroTRAP technique to discover mRNAs enriched in such NGC neurons. One mRNA, for endothelial nitric oxide synthase (eNOS), is uniquely expressed. By experiments both on the environmental/sensory side and with respect to motoric regulation, endothelial nitric oxide expression is shown to be functionally important. Five independent lines of evidence indicate that these eNOS neurons have a significant relation with their blood supply.