Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 29(115), 2018

DOI: 10.1073/pnas.1722681115

Links

Tools

Export citation

Search in Google Scholar

Universal folding pathways of polyhedron nets

Journal article published in 2018 by Paul M. Dodd, Pablo F. Damasceno ORCID, Sharon C. Glotzer
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance What makes an object successful at thermal folding? Protein scientists study how sequence affects the pathways by which chained amino acids fold and the structures into which they fold. Here we investigate the inverse problem: Starting with a 3D object as a polyhedron we ask, which ones, among the many choices of 2D unfoldings, are able to fold most consistently? We find that these “nets” follow a universal balance between entropy loss and potential energy gain, allowing us to explain why some of their geometrical attributes (such as compactness) represent a good predictor for the folding propensity of a given shape. Our results can be used to guide the stochastic folding of nanoscale objects into drug-delivery devices and thermally folded robots.