Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 29(115), p. 7497-7502, 2018

DOI: 10.1073/pnas.1722265115

Links

Tools

Export citation

Search in Google Scholar

First evidence for silica condensation within the solar protoplanetary disk

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance The oldest solar system solids dated are refractory inclusions [Ca-Al–rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs)], which occur in chondritic meteorites and provide records of high-temperature processes in the early solar system. An ultrarefractory CAI and the silica-phase quartz occur in an AOA from the carbonaceous chondrite Yamato-793261, indicating formation over a temperature range exceeding 650 K. The minerals have 16 O-rich compositions consistent with the nebular setting associated with refractory inclusions. This AOA provides direct evidence that silica condensed from gas in a CAI/AOA-forming region in our solar system indicates that gas became Si-rich as Mg condensed and may explain the origin of silica detected from infrared spectroscopy of T Tauri and asymptotic giant branch stars.