Published in

Springer Nature [academic journals on nature.com], Translational Psychiatry, 9(7), p. e1240-e1240, 2017

DOI: 10.1038/tp.2017.211

Links

Tools

Export citation

Search in Google Scholar

Identification of a plasma signature of psychotic disorder in children and adolescents from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe identification of an early biomarker of psychotic disorder is important as early treatment is associated with improved patient outcome. Metabolomic and lipidomic approaches in combination with multivariate statistical analysis were applied to identify plasma alterations in children (age 11) (38 cases vs 67 controls) and adolescents (age 18) (36 cases vs 117 controls) preceeding or coincident with the development of psychotic disorder (PD) at age 18 in the Avon Longitudinal Study of Parents and Children (ALSPAC). Overall, 179 lipids were identified at age 11, with 32 found to be significantly altered between the control and PD groups. Following correction for multiple comparisons, 8 of these lipids remained significant (lysophosphatidlycholines (LPCs) LPC(18:1), LPC(18:2), LPC(20:3); phosphatidlycholines (PCs) PC(32:2; PC(34:2), PC(36:4), PC(0-34-3) and sphingomyelin (SM) SM(d18:1/24:0)), all of which were elevated in the PD group. At age 18, 23 lipids were significantly different between the control and PD groups, although none remained significant following correction for multiple comparisons. In conclusion, the findings indicate that the lipidome is altered in the blood during childhood, long before the development of psychotic disorder. LPCs in particular are elevated in those who develop PD, indicating inflammatory abnormalities and altered phospholipid metabolism. These findings were not found at age 18, suggesting there may be ongoing alterations in the pathophysiological processes from prodrome to onset of PD.