Published in

Nature Research, Nature Communications, 1(8), 2017

DOI: 10.1038/s41467-017-01135-w

Links

Tools

Export citation

Search in Google Scholar

Calmodulin dissociates the STIM1-Orai1 complex and STIM1 oligomers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractStore-operated calcium entry (SOCE) is a major pathway for calcium ions influx into cells and has a critical role in various cell functions. Here we demonstrate that calcium-bound calmodulin (Ca2+-CaM) binds to the core region of activated STIM1. This interaction facilitates slow Ca2+-dependent inactivation after Orai1 channel activation by wild-type STIM1 or a constitutively active STIM1 mutant. We define the CaM-binding site in STIM1, which is adjacent to the STIM1–Orai1 coupling region. The binding of Ca2+-CaM to activated STIM1 disrupts the STIM1–Orai1 complex and also disassembles STIM1 oligomer. Based on these results we propose a model for the calcium-bound CaM-regulated deactivation of SOCE.