Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 26(114), p. 6752-6757, 2017

DOI: 10.1073/pnas.1706021114

Links

Tools

Export citation

Search in Google Scholar

Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo[a]pyrene

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Benzo[a]pyrene (BaP) is a widespread potent carcinogen found in food, coal tar, cigarette smoke, and industrial smoke. Cigarette smoking is the leading cause of lung cancer, and the mutagenesis in smoking-associated lung cancer is determined by multiple factors, including nucleotide excision repair. We have developed a general method for genome-wide mapping of nucleotide excision repair at single-nucleotide resolution and applied it to generate repair maps of UV- and BaP-induced DNA damage in human. Results show a novel sequence specificity of BaP diol epoxide-deoxyguanosine repair. This general method can be used to study repair of all types of DNA damages that undergo nucleotide excision repair.