Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 26(115), p. 6691-6696, 2018

DOI: 10.1073/pnas.1721152115

Links

Tools

Export citation

Search in Google Scholar

Lipid binding attenuates channel closure of the outer membrane protein OmpF

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Outer-membrane porins are often considered as passive conduits of small molecules across lipid bilayers. Using native mass spectrometry experiments we identify a pH-sensitive lipid-binding mechanism of outer membrane porin F, which enables increased threading of a colicin-derived peptide through open channels. Supported by molecular dynamics simulations and channel recording experiments, we posit that this mechanism attenuates channel opening in response to changes in environmental conditions, specifically pH. These findings have important consequences for mass spectrometry experiments, wherein the role of charge is often overlooked, and they also could help provide understanding of antibiotics that gain access to Gram-negative bacteria through porin-mediated pathways.