Published in

Springer Nature [academic journals on nature.com], Cell Death and Disease, 8(9), 2018

DOI: 10.1038/s41419-018-0868-3

Links

Tools

Export citation

Search in Google Scholar

Species-independent contribution of ZBP1/DAI/DLM-1-triggered necroptosis in host defense against HSV1

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractNecroptosis complements apoptosis as a host defense pathway to stop virus infection. Herpes simplex virus shows a propensity to trigger necroptosis of mouse cells and mice even though cell death is blocked in human cells through UL39-encoded ICP6. This ribonucleotide reductase large subunit (R1) nucleates RHIM-dependent oligomerization of RIP3 kinase (RIPK3, also known as RIP3) in mouse cells but inhibits activation in cells from the natural human host. By interrogating the comparative behavior of ICP6-deficient viruses in mouse and human cells, here we unveil virus-induced necroptosis mediated by Z-DNA-binding protein 1 (ZBP1, also known as DAI). ZBP1 acts as a pathogen sensor to detect nascent RNA transcripts rather than input viral DNA or viral DNA generated through replication. Consistent with the implicated role of virus-induced necroptosis in restricting infection, viral pathogenesis is restored in Zbp1−/−, Ripk3−/− and Mlkl−/− mice. Thus, in addition to direct activation of RIPK3 via ICP6, HSV1 infection in mice and mouse cells triggers virus-induced necroptosis through ZBP1. Importantly, virus-induced necroptosis is also induced in human HT-29 cells by ICP6 mutant viruses; however, ZBP1 levels must be elevated for this pathway to be active. Thus, our studies reveal a common, species-independent role of this nucleic acid sensor to detect the presence of this virus. HSV1 ICP6 functions as a bona fide RHIM signaling inhibitor to block virus-induced necroptosis in its natural host. Altogether, ZBP1-dependent restriction of herpesvirus infection emerges as a potent antiviral armament of the innate immune system.