Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 26(114), 2017

DOI: 10.1073/pnas.1618421114

Links

Tools

Export citation

Search in Google Scholar

Spacer capture and integration by a type I-F Cas1–Cas2-3 CRISPR adaptation complex

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance CRISPR-Cas systems provide prokaryotic adaptive immunity against invading genetic elements. For immunity, fragments of invader DNA are integrated into CRISPR arrays by Cas1 and Cas2 proteins. Type I-F systems contain a unique fusion of Cas2 to Cas3, the enzyme responsible for destruction of invading DNA. Structural, biophysical, and biochemical analyses of Cas1 and Cas2-3 from Pectobacterium atrosepticum demonstrated that they form a 400-kDa complex with a Cas1 4 :Cas2-3 2 stoichiometry. Cas1–Cas2-3 binds, processes, and catalyzes the integration of DNA into CRISPR arrays independent of Cas3 activity. The arrangement of Cas3 in the complex, together with its redundant role in processing and integration, supports a scenario where Cas3 couples invader destruction with immunization—a process recently demonstrated in vivo.