Dissemin is shutting down on January 1st, 2025

Published in

BMJ Publishing Group, Annals of the Rheumatic Diseases, 7(77), p. 973-980, 2018

DOI: 10.1136/annrheumdis-2017-212404

Links

Tools

Export citation

Search in Google Scholar

Biomechanical properties of bone are impaired in patients with ACPA-positive rheumatoid arthritis and associated with the occurrence of fractures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ObjectivesBone loss is a well-established consequence of rheumatoid arthritis (RA). To date, bone disease in RA is exclusively characterised by bone density measurements, while the functional properties of bone in RA are undefined. This study aimed to define the impact of RA on the functional properties of bone, such as failure load and stiffness.MethodsMicro-finite element analysis (µFEA) was carried out to measure failure load and stiffness of bone based on high-resolution peripheral quantitative CT data from the distal radius of anti-citrullinated protein antibody (ACPA)-positive RA (RA+), ACPA-negative RA (RA−) and healthy controls (HC). In addition, total, trabecular and cortical bone densities as well as microstructural parameters of bone were recorded. Correlations and multivariate models were used to determine the role of demographic, disease-specific and structural data of bone strength as well as its relation to prevalent fractures.Results276 individuals were analysed. Failure load and stiffness (both P<0.001) of bone were decreased in RA+, but not RA−, compared with HC. Lower bone strength affected both female and male patients with RA+, was related to longer disease duration and significantly (stiffness P=0.020; failure load P=0.012) associated with the occurrence of osteoporotic fractures. Impaired bone strength was correlated with altered bone density and microstructural parameters, which were all decreased in RA+. Multivariate models showed that ACPA status (P=0.007) and sex (P<0.001) were independently associated with reduced biomechanical properties of bone in RA.ConclusionIn summary, µFEA showed that bone strength is significantly decreased in RA+ and associated with fractures.