Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-29601-5

Links

Tools

Export citation

Search in Google Scholar

Experimental Demonstration of a Spin Logic Device with Deterministic and Stochastic Mode of Operation

Journal article published in 2018 by Punyashloka Debashis, Zhihong Chen ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSpin based logic devices have attracted a lot of research interest due to their potential low-power operation, non-volatility and possibility to enable new computing applications. Here we present an experimental demonstration of a novel spin logic device working at room temperature without the requirement of an external magnetic field. Our device is based on a pair of coupled in-plane magnetic anisotropy (IMA) magnet and a perpendicular magnetic anisotropy (PMA) magnet. The information written in the state of the IMA magnet is transferred to the state of the PMA magnet by means of a symmetry breaking dipolar field, while the two layers are electrically isolated. In addition to having the basic tenets of a logic device, our device has inbuilt memory, taking advantage of the non-volatility of nanomagnets. In another mode of operation, the same device is shown to have the functionality of a true random number generator (TRNG). The combination of logic functionality, nonvolatility and capability to generate true random numbers all in the same spin logic device, makes it uniquely suitable as a hardware for many new computing ideas.