Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 7(115), p. 1445-1450, 2018

DOI: 10.1073/pnas.1714901115

Links

Tools

Export citation

Search in Google Scholar

Nature and evolution of incommensurate charge order in manganites visualized with cryogenic scanning transmission electron microscopy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Charge order is a modulation of the electron density and is associated with unconventional phenomena, including colossal magnetoresistance and metal–insulator transitions. Determining how the lattice responds provides insights into the nature and symmetry of the ordered state. Scanning transmission electron microscopy can measure lattice displacements with picometer precision, but its use has been limited to room-temperature phases only. Here, we demonstrate high-resolution imaging at cryogenic temperature and map the nature and evolution of charge order in a manganite. We uncover picometer-scale displacive modulations whose periodicity is strongly locked to the lattice and visualize temperature-dependent phase inhomogeneity in the modulations. These results pave the way to understanding the underlying structure of charge-ordered states and other complex phenomena.