Published in

American Society for Microbiology, Applied and Environmental Microbiology, 8(84), 2018

DOI: 10.1128/aem.02887-17

Links

Tools

Export citation

Search in Google Scholar

Facile Arsenazo III-Based Assay for Monitoring Rare Earth Element Depletion from Cultivation Media for Methanotrophic and Methylotrophic Bacteria

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Recently, methanotrophic and methylotrophic bacteria were found to utilize rare earth elements (REEs). To monitor the REE content in culture media of these bacteria, we have developed a rapid screening method using the Arsenazo III (AS III) dye for spectrophotometric REE detection in the low μM (0.1 to 10 μM) range. We designed this assay to follow La III and Eu III depletion from the culture medium by the acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum strain SolV. The assay can also be modified to screen the uptake of other REEs, such as Pr III , or to monitor the depletion of La III from growth media in neutrophilic methylotrophs such as Methylobacterium extorquens strain AM1. The AS III assay presents a convenient and fast detection method for REE levels in culture media and is a sensitive alternative to inductively coupled plasma mass spectrometry (ICP-MS) or atomic absorption spectroscopy (AAS). IMPORTANCE REE-dependent bacterial metabolism is a quickly emerging field, and while the importance of REEs for both methanotrophic and methylotrophic bacteria is now firmly established, many important questions, such as how these insoluble elements are taken up into cells, are still unanswered. Here, an Arsenazo III dye-based assay has been developed for fast, specific, and sensitive determination of REE content in different culture media. This assay presents a useful tool for optimizing cultivation protocols, as well as for routine REE monitoring during bacterial growth without the need for specialized analytical instrumentation. Furthermore, this assay has the potential to promote the discovery of other REE-dependent microorganisms and can help to elucidate the mechanisms for acquisition of REEs by methanotrophic and methylotrophic bacteria.