Published in

Nature Research, Nature Communications, 1(9), 2018

DOI: 10.1038/s41467-018-05138-z

Links

Tools

Export citation

Search in Google Scholar

Persistent CO2 emissions and hydrothermal unrest following the 2015 earthquake in Nepal

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractFluid–earthquake interplay, as evidenced by aftershock distributions or earthquake-induced effects on near-surface aquifers, has suggested that earthquakes dynamically affect permeability of the Earth’s crust. The connection between the mid-crust and the surface was further supported by instances of carbon dioxide (CO2) emissions associated with seismic activity, so far only observed in magmatic context. Here we report spectacular non-volcanic CO2 emissions and hydrothermal disturbances at the front of the Nepal Himalayas following the deadly 25 April 2015 Gorkha earthquake (moment magnitude Mw = 7.8). The data show unambiguously the appearance, after the earthquake, sometimes with a delay of several months, of CO2 emissions at several sites separated by > 10 kilometres, associated with persistent changes in hydrothermal discharges, including a complete cessation. These observations reveal that Himalayan hydrothermal systems are sensitive to co- and post- seismic deformation, leading to non-stationary release of metamorphic CO2 from active orogens. Possible pre-seismic effects need further confirmation.