Published in

American Society of Mechanical Engineers, Journal of Electronic Packaging, 2(139), 2017

DOI: 10.1115/1.4036238

Links

Tools

Export citation

Search in Google Scholar

Assembly of Heterogeneous Materials for Biology and Electronics: From Bio-Inspiration to Bio-Integration

Journal article published in 2017 by Yuyan Gao ORCID, Huanyu Cheng
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Specific function or application in electronics often requires assembly of heterogeneous materials in a single system. Schemes to achieve such goals are of critical importance for applications ranging from the study in basic cell biology to multifunctional electronics for diagnostics/therapeutics. In this review article, we will first briefly introduce a few assembly techniques, such as microrobotic assembly, guided self-assembly, additive manufacturing, and transfer printing. Among various heterogeneous assembly techniques, transfer printing represents a simple yet versatile tool to integrate vastly different materials or structures in a single system. By utilizing such technique, traditionally challenging tasks have been enabled and they include novel experimental platforms for study of two-dimensional (2D) materials and cells, bio-integrated electronics such as stretchable and biodegradable devices, and three-dimensional (3D) assembly with advanced materials such as semiconductors.